166 research outputs found

    Simply Exponential Approximation of the Permanent of Positive Semidefinite Matrices

    Full text link
    We design a deterministic polynomial time cnc^n approximation algorithm for the permanent of positive semidefinite matrices where c=eγ+14.84c=e^{\gamma+1}\simeq 4.84. We write a natural convex relaxation and show that its optimum solution gives a cnc^n approximation of the permanent. We further show that this factor is asymptotically tight by constructing a family of positive semidefinite matrices

    On the Spread of Viruses on the Internet

    Get PDF
    We analyze the contact process on random graphs generated according to the preferential attachment scheme as a model for the spread of viruses in the Internet. We show that any virus with a positive rate of spread from a node to its neighbors has a non-vanishing chance of becoming epidemic. Quantitatively, we discover an interesting dichotomy: for it virus with effective spread rate λ, if the infection starts at a typical vertex, then it develops into an epidemic with probability λ^Θ ((log (1/ λ)/log log (1/ λ))), but on average the epidemic probability is λ^(Θ (1))

    Approximating the Largest Root and Applications to Interlacing Families

    Full text link
    We study the problem of approximating the largest root of a real-rooted polynomial of degree nn using its top kk coefficients and give nearly matching upper and lower bounds. We present algorithms with running time polynomial in kk that use the top kk coefficients to approximate the maximum root within a factor of n1/kn^{1/k} and 1+O(lognk)21+O(\tfrac{\log n}{k})^2 when klognk\leq \log n and k>lognk>\log n respectively. We also prove corresponding information-theoretic lower bounds of nΩ(1/k)n^{\Omega(1/k)} and 1+Ω(log2nkk)21+\Omega\left(\frac{\log \frac{2n}{k}}{k}\right)^2, and show strong lower bounds for noisy version of the problem in which one is given access to approximate coefficients. This problem has applications in the context of the method of interlacing families of polynomials, which was used for proving the existence of Ramanujan graphs of all degrees, the solution of the Kadison-Singer problem, and bounding the integrality gap of the asymmetric traveling salesman problem. All of these involve computing the maximum root of certain real-rooted polynomials for which the top few coefficients are accessible in subexponential time. Our results yield an algorithm with the running time of 2O~(n3)2^{\tilde O(\sqrt[3]n)} for all of them
    corecore